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Infinitesimal Calculus of Variations
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It is desirable that physical laws should be formulated infinitesimally, while it is
well known that the calculus of variations, which has long been concerned with
local or global horizons, gives a unifying viewpoint of various arenas of modern
physics. The principal objective of this paper is to infinitesimalize the calculus
of variations by making use of the vanguard of modern differential geometry,
namely, synthetic differential geometry, in which nilpotent infinitesimals of
various orders are abundantly and coherently available. Our treatment is
completely coordinate-free , the decomposition of a state into its position and
velocity components being replaced by the vertical±horizontal decomposition
associated with an appropriate connection. Within our newly established
infinitesimal calculus of variations, generalized conservation laws of momentum
and energy are demonstrated.

INTRODUCTION

The variational viewpoint gives various fields of modern physics a

unifying tone. By way of example, Snell’ s law in geometric optics, Lagrange’ s

equation in analytical mechanics, and SchroÈ dinger’ s equation in quantum
mechanics can be put under the same umbrella of a unifying variational

principle. Indeed, as is well known, it was the variational analogy between

the mechanics of a point mass in a force field and geometric optics in an

inhomogeneous medium that led SchroÈ dinger to his splendid discovery of

the wave theory of matter.
However, it is desirable that physical laws should be formulated infinites-

imally, which would be tantamount to saying that physical laws should be

expressed in terms of differential equations, were we to adhere to standard

mathematics without infinitesimals at all. It is indeed mysterious that nature

should obey variational principles, but it would be less mysterious if they

were formulated infinitesimally.
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Synthetic differential geometry is an avant-garde branch of differential

geometry, in which nilpotent infinitesimals, once ostracized from orthodox

differential geometry, are abundantly and coherently available. The idea of
nilpotent infinitesimals is by no means quixotic, but is indispensable in

the well-established tradition of algebraic geometry aÁ la Grothendieck. The

principal objective of this paper is to infinitesimalize the calculus of variations

within the burgeoning realm of synthetic differential geometry.

Microlinear spaces occupy such a central position in synthetic differential

geometry as smooth manifolds have long enjoyed in standard differential
geometry. Bunge and Heggie’ s (1984) synthetic approach to the calculus of

variations is too narrow to cover microlinear spaces without a stitch of

coordinates, inheriting too much of the legacy of coordinate manipulations

from the standard calculus of variations. The missing link in a synthetic

calculus of variations is provided by the vertical±horizontal decomposition

associated with an appropriate pointwise connection. This point will be
enlarged upon in Section 2, where an abstract version of Lagrange’ s equation

is established. In Section 3 we will establish conservation laws of momentum

and energy within our infinitesimal calculus of variations. Section 1 is devoted

to miscellaneous preliminaries.

1. PRELIMINARIES

We assume that the reader is familiar with Lavendhomme’s (1996)

celebrated textbook on synthetic differential geometry up to Chapter 5. Since

our discussions will be carried out within this synthetic framework, he or

she should make it a rule to think not classically, but intuitionistically. How-

ever, except for abandonment of the principle of excluded middle and Zorn’ s
lemma, he or she can presume that we are working within the standard

universe of sets. The set of real numbers (including nilpotent infinitesimals

in abundance) is denoted by R and is required to abide by the so-called

general Kock axiom (Lavendhomme, 1996, §2.1.3), which surely subsumes

the Kock±Lawvere axiom (Lavendhomme, 1996, §§1.1.1) as the fulcrum of

synthetic differential calculus. The set of natural numbers is denoted by N .
We denote the sets {d P R ) d 2 5 0} and {e P R ) en 5 0 for some n P N }

by D and D ` , respectively. The Kock±Lawvere axiom guarantees that for

any function f : D ® R there exists a unique d f P R such that

(1.1) f (d ) 2 f (0) 5 d d f

for any d P D. Given a function g: D ` ® R , we denote by g8 the function

assigning d g(e 1 ? ) to each e P D ` , where g(e 1 ? ) denotes the function

assigning g(e 1 d ) to each d P D.
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Our axiom of integration goes as follows:

(1.2) For any function f : D ` ® R , there exists a unique function g:

D ` ® R with g8 5 f and g(0) 5 0.

Given e1, e2 P D ` , we denote g(e2) 2 g(e1) by * e2
e1 f (e)de or * e2

e1 f. The

following simple but striking proposition on integration is well known in

synthetic infinitesimal calculus and will be useful in Section 3.

Proposition 1.1. For any function f : D ` ® R , any e P D ` , and any
d P D, we have

(1.3) * e 1 d
e f 5 df (e)

Proof. See Proposition 11 of Lavendhomme (1996, §1.3). n

Now we turn to connections on vector bundles. A microlinear space M
shall be chosen once and for all in this section. A vector bundle over M is
a mapping j : E ® M such that E is a microlinear space and Ex 5 j 2 1(x) is

a Euclidean R -module for any x P M. By way of example, the tangent bundle

t M: M D ® M [i.e., t M(t) 5 t(0) for any t P M D] and the trivial bundle p 1:

M 3 ! ® M for a Euclidean R -module ! [i.e., p 1(x, a) 5 x for any (x, a)

P M 3 !] are vector bundles over M. Given vector bundles j : E ® M and
h : F ® M over M, we denote by +( j , h ) the totality of linear mappings

from Ex to Fx for x P M, and the mapping p +( j , h ): +( j , h ) ® M assigning

x to each linear mapping from Ex to Fx is a vector bundle over M. In particular,

if h is a trivial bundle p 1: M 3 ! ® M for a Euclidean R -module !, then

+( j , h ) and p +( j , h ) are also denoted by +( j , !) and p +( j ,!), respectively.

Let j : E ® M be a vector bundle. We denote by K j the mapping which
assigns, to each t P E D, ( j + t, t(0)) P M D 3 M E. Both E D and M D 3 M E
can be regarded naturally as vector bundles over E and over M D, and K j is

linear with respect to both vector bundle structures (Moerdijk and Reyes

(1991, Chapter V. Proposition 3.4.8)). A (linear) connection on j is a mapping

¹ : M D 3 M E ® E D pursuant to the following conditions:

(1.4) It is a section of K j , i.e., K j + ¹ is the identity transformation of

M D 3 M E.

(1.5) It is homogeneous with respect to both vector bundle structures

( over E and ? over M D.

(1.6) For any x P M and any (t,d ) P M D 3 D, the mapping u P Ex

j ¹ (t, u)(d ) P Et(d), denoted by p ¹
(t,d) or p(t,d), is bijective. Its

inverse is denoted by q ¹
(t,d) 5 q(t,d): Et(d) ® Ex. We call p(t,d) the

parallel transport from t(0) to t(d ) along t, while q(t,d) is called

the parallel transport from t(d ) to t(0) along t.

If the vector bundle j : E ® M is a trivial bundle M 3 ! ® M and
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¹ (t, (t(0),a))(d ) 5 (t(d ), a) for any t P M D, any a P !, and any d P D,

then the connection ¹ is called trivial. A connection on the tangent bundle

t M: M D ® M is called a connection on M. From now on in this section we
will assume that M is bestowed with a preassigned connection ¹ M.

Synthetic differential calculus for R -valued functions (Lavendhomme,

1996, §§1.1, 1.2) can be generalized easily, to a certain extent, to synthetic

covariant differential calculus for E-valued functions, where j : E ® M is a

vector bundle over M and it is endowed with a connection ¹ . By way of

example, we have a variant of (1.4) claiming that for any function t: D ®
E there exists a unique d t P E j (tÅ(0)) such that

(1.7) q ¹
(t,d) (tÅ(d )) 2 tÅ(0) 5 d d tÅ

for any d P D, where t 5 j + tÅ. In particular, if the vector bundle happens

to be the tangent bundle t M: M D ® M with ¹ 5 ¹ M, then a microsquare g
on M can be reckoned as a function g (?, ? ) assigning g (d, ? ) P M D to each

d P D, and d g (?, ? ) coincides with C( g ) by Proposition 7 of Lavendhomme

(1996, §5.2).
Now we conclude this section by discussing induced connections. Let

j : E ® M and h : F ® M be vector bundles over the same base space M
with connections ¹ and ¹ 8 bestowed upon them. We now define an induced

connection ¹ Ãon p +( j , h ) as follows:

(1.8) ¹ Ã(t, vÃ)(d )(v) 5 p ¹ 8
(t,d)(vÃ(q

¹
(t,d)(v))) for any t P M D, any d P D, any

vÃP +( j , h )t(0), and any v P Et(d ).

Proposition 1.2. For any s P +( j , h )D and any g P E D with ( p +( j , h ))
D

( s ) 5 j D( g ), we have

(1.9) d ( s ( g )) 5 ( d s )( g (0)) 1 s (0)( d g )

where s ( g ) denotes the mapping d P D j s (d )( g (d )).

Proof. Let t 5 ( p +( j , h ))
D ( s ) 5 j D( g ). For any d P D, we have

(1.10) q ¹ 8
(t,d) ( s (d ) ( g (d )))

5 q ¹ Ã
(t,d) ( s (d ))(q ¹

(t,d) ( g (d )))

5 ( s (0) 1 d d s )( g (0) 1 d d g )

5 s (0)( g (0)) 1 d{( d s )( g (0)) 1 s (0) ( d g )}

Therefore the desired proposition obtains. n

2. LAGRANGE’S EQUATIONS

A microlinear space M ornamented with a symmetric connection , shall

be fixed once and for all in this section. Let us suppose also that a function
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L on M D to R , called a Lagrangian on M, is given. We say that the Lagrangian

L and the connection , are infinitesimally compatible if they satisfy the

following condition:

(2.1) L( g (d, ? )) 2 L( p( g ( ? ,0),d)( g (0, ? )))
5 L(q( g ( ? ,0),d)( g (d, ? ))) 2 L( g (0, ? ))

for any microsquare g on M, where p( g ( ? ,0),d) and q( g ( ? , 0),d) denote the mutually
inverse parallel transports along the infinitesimal path g ( ? ,0) between g (0,0)

and g (d,0) (Lavendhomme, 1996, §5.2.3).

Let us give two important examples of the above situation in which

(2.1) obtains.

Proposition 2.1. If M is a Euclidean R -module E so that M D can be

identified with E 3 E [(a,b) P E 3 E naturally gives rise to a mapping d P
D j (a 1 db) P E ], and if the connection , is trivial in the sense that

(2.2) , ((a,b),(a,c))(d1, d2) 5 a 1 d1b 1 d2c

for any a,b,c P E and any d1,d2 P D, then (2.1) obtains.

Proof. Since E is a Euclidean R -module, any microsquare g on E is of

the following form for unique a1,a2,b1,b2 P E:

(2.3) g (d1, d2) 5 a1 1 d1a2 1 d2(b1 1 d1b2)

for any (d1,d2) P D2. Therefore we have

(2.4) L( g (d, ? )) 2 L( p( g ( ? ,0),d)( g (0, ? )))
5 L(a1 1 da2, b1 1 db2) 2 L(a1 1 da2,b1)

5 {L(a1, b1) 1 d - 1
a2L(a1,b1) 1 d - 2

b2L(a1,b1)}

2 {L(a1, b1) 1 d - 1
a2L(a1, b1)}

5 d - 2
b2L(a1, b1)

where - 1
a2L(a1,b1) denotes the derivative of the mapping d P D j L(a1 1

da2,b1) at 0, while - 2
b2L(a1,b1) denotes the derivative of the mapping d P D

j L(a1,b1 1 db2) at 0. We have also

(2.5) L(q( g ( ? ,0),d)( g (d, ? ))) 2 L( g (0, ? ))
5 L(a1,b1 1 db2) 2 L(a1, b1)

5 {L(a1,b1) 1 d - 2
b2L(a1,b1)} 2 L(a1,b1)

5 d - 2
b2L(a1, b1)

Therefore (2.1) obtains. n

Proposition 2.2. If the Lagrangian L is covariantly invariant with respect

to the connection , (e.g., L is represented by a covariantly invariant metric

g on M ), then (2.1) obtains.
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From now on we will assume that (2.1) obtains. We now define two

types of partial differentiation of L. Given s,t P M D with s(0) 5 t(0), there

exists unique D1L(t)(s) P R such that
(2.6) L( p(s,d)(t)) 2 L(t) 5 dD1L(t)(s)

for any d P D.

Proposition 2.3. Given t P M D with x 5 t(0), the mapping s P (M D)x
j

D1L(t)(s) is homogeneous.

Proof. For any a P R we have

(2.7) dD1L(t)( a s)
5 L( p( a s,d)(t)) 2 L(t)

5 L( p(s, a d)(t)) 2 L(t)

5 a dD1L(t)(s)

Therefore the desired statement follows.

We now turn to the other type of partial differentiation of L. Given

s,t P M D with s(0) 5 t(0), there exists unique D2L(t)(s) P R such that

(2.8) L(t 1 ds) 2 L(t) 5 dD2L(t)(s)

for any d P D.

Proposition 2.4. Given t P M D with x 5 t(0), the mapping s P (M D)x
j

D2L(t)(s) is homogeneous.

Proof. For any a P R we have

(2.9) dD2L(t)( a s)
5 L(t 1 d a s) 2 L(t)
5 a dD2L(t)(s)

Therefore the desired statement follows. n

Proposition 2.5. For any g P M D2
and any d P D, we have

(2.10) L( g (d, ? )) 2 L( g (0, ? ))
5 d{D2L( g (0, ? ))( v ( g )) 1 D1L( g (0, ? ))( g ( ? ,0))}

Proof. We have that

(2.11) L( g (d, ? )) 2 L( g (0, ? ))
5 L( g (d,? )) 2 L( p( g ( ? ,0),d)( g (0, ? )))

1 L( p( g ( ? ,0),d)( g (0, ? ))) 2 L( g (0, ? ))
5 L(q( g ( ? ,0),d)( g d, ? ))) 2 L( g (0, ? ))

1 dD1L( g (0, ? ))( g ( ? ,0)) [(2.1) and (2.6)]
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5 L( g (0, ? ) 1 dC( g )) 2 L( g (0, ? ))
1 dD1L( g (0, ? ))( g ( ? ,0))

(Proposition 7 of Lavendhomme, 1996, §5.2)
5 dD2L( g (0, ? ))(C( g )) 1 dD1L( g (0, ? ))( g ( ? ,0))

[(2.8)]

Therefore the desired result (2.10) obtains. n

For any u P M D 3 D ` and any e P D ` , we define - u (e) P M D2
to be

(2.12) (d1,d2) P D2 j u (d1,e 1 d2) P M

Then the next result follows from Proposition 7 of §5.2 and Corollary 5 of

§5.3 of Lavendhomme (1996):

Proposition 2.6. We have
(2.13) d ( - u (e)(?, ? )) 5 d ( - u (e)( ? ,?))

where - u (e)(?, ? ) denotes the function d P D j - u (e)(d,? ) P M D, while

- u (e)( ? ,?) denotes the function d P D j - u (e)( ? ,d ) P M D.

Proposition 2.7. For any u P M D 3 D ` and any e P D ` , we have

(2.14) L ( - u (e) (d(, ? )) 2 L ( - u (e)(0, ? ))
5 d{((D2L ( - u (?)(0, ? )))( - u (?)( ? ,0)))8(e)

2 ((D2L( - u (?)(0, ? )))8 (e))( - u (e)( ? ,0))

1 D1L( - u (e)( ? ,0))( - u (e)( ? ,0))}

where ((D2L( - u (?)(0, ? )))( - u (?) ( ? ,0)))8(e) denotes the derivative of the

mapping

e8 P D ` j (D2L( - u (e8)(0,)))( - u (e8)( ? ,0)) P R at e

and (D2L( - u (?)(0, ? )))8(e) denotes the covariant derivative of the mapping

e8 P D ` j D2L( - u (e8)(0, ? )) P + ( t M , R ) at e.

Proof. We have

(2.15) L( - u (e)(d, ? )) 2 L ( - u (e)(0, ? ))
5 d{D2L( - u (e)(0, ? )) ( d ( - u (e)(?, ? )))

1 D1L( - u (e)(0, ? ))( - u (e)( ? ,0))} [Proposition 2.5]

5 d{D2L( - u (e)(0, ? )) ( d ( - u (e)( ? ,?)))

1 D1L( - u (e)(0, ? ))( - u (e)( ? ,0)) } [Proposition 2.6]

5 d{D2L( - u (e)(0, ? )) d ( - u (e 1 ?)( ? ,0)))
1 D1L( - u (e)(0, ? ))( - u (e)( ? ,0))}

[since - u (e 1 ?)( ? ,0) 5 u ( ? , e 1 ?) 5 - u (e)( ? ,?)]

5 d{((D2L( - u (?)(0, ? )))( - u (?) ( ? ,0)))8 (e)

2 ((D2L( - u (?)(0, ? )))8(e)) ( - u (e)( ? ,0))
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1 D1L( - u (e)(0, ? ))( - u (e)( ? ,0))} [Proposition 1.2]

Therefore the desired proposition obtains. n

Now let us assume the following fundamental axiom of infinitesimal
calculus of variations:

(2.16) Given F: D ` ® + ( t M , R ), if we have

(2.16.1) #
e2

e1

F(e)( f (e))de 5 0

for any e1, e2 P D ` and any f : D ` ® M D such that

(2.16.2) ( p +( t M, R ))
D ` (F ) 5 ( t M)D ` (f)

and

(2.16.3) both f (e1) and f (e2) vanish

then F vanishes all over D ` .

The following is an abstract version of Lagrange’ s equation.

Theorem 2.8. We assume (2.16). Given a : D ` ® M, if we have

(2.17) d #
e2

e1

L( - u (e)(?, ? ))de 5 0

for any e1, e2 P D ` and any u : D 3 D ` ® M such that

(2.18) a ( ? ) 5 u (0, ? )

and

(2.19) Both tangent vectors u ( ? ,e1) and u ( ? , e2) to M vanish

then we have the following Lagrange equation:

(2.20) (D2L( a 8(?)))8(e) 2 D1L( a 8(e)) 5 0

for any e P D ` , where (D2L( a 8(?)))8(e) denotes the covariant derivative of
the mapping e8 P D ` j D2L( a 8(e8)) P +( t M , R ) at e.

Proof. For any d P D we have

(2.21) 0

5 d d #
e2

e1

L( - u (e)(?, ? ))de [(2.17)]
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5 #
e2

e1

L( - u (e)(d, ? ))de 2 #
e2

e1

L( - u (e)(0, ? ))de

d H #
e2

e1

((D2L( - u (?)(0, ? )))( - u (?)( ? , 0)))8(e)de

2 #
e2

e1

((D2L( - u (?)(0, ? )))8(e) 2 D1L( - u (e)(0, ? )))

3 ( - u (e)( ? , 0))de J [Proposition 2.7]

5 d H (D2L( - u (e2)(0, ? )))( - u (e2)( ? , 0))

2 (D2L( - u (e1)(0, ? )))( - u (e1)( ? , 0))

2 #
e2

e1

((D2L( - u (?)(0, ? )))8(e) 2 D1L( - u (e)(0, ? )))

3 ( - u (e)( ? , 0))de J
5 2 d #

e2

e1

((D2L( - u (?)(0, ? )))8(e) 2 D1L( - u (e)(0, ? )))

3 ( - u (e)( ? , 0))de [ (2.19)]

5 2 d #
e2

e1

((D2L( a 8(?)))8(e) 2 D1L( a 8(e)))( u ( ? , e))de

Therefore (2.20) follows from the fundamental axiom of infinitesimal calculus

of variations. n

Any function a : D ` ® M obeying condition (2.20) is called a Lagrangian
flow on M.

3. CONSERVATION LAWS

In this section we will elicit generalized conservation laws of momentum
and energy from Proposition 2.7. We will continue to assume that M is a

microlinear space endowed with a symmetric connection ¹ , for which (2.1)

obtains. First we deal with a generalized conservation law of momentum.

Theorem 3.1. Given u : D 3 D ` ® M and e1, e2 P D ` , if u (0, ? ) is a
Lagrangian flow, and if u satisfies

(3.1) d #
e2

e1

L( - u (e)(?, ? ))de 5 0



1780 Nishimura

then we have

(3.2) D2L( - u (e1)(0, ? ))( - u (e1)( ? , 0))

5 D2L( - u (e2)(0, ? ))( - u (e2)( ? , 0))

Proof. For any d P D we have

(3.3) 0

5 d d #
e2

e1

L( - u (e)(?, ? ))de [(3.1)]

5 #
e2

e1

L( - u (e)(d, ? ))de 2 #
e2

e1

L( - u (e)(0, ? ))de

5 d H #
e2

e1

((D2L( - u (?)(0, ? )))( - u (?)( ? , 0)))8(e)de

2 #
e2

e1

((D2L( - u (?)(0, ? )))8(e) 2 D1L( - u (e)(0, ? )))

3 ( - u (e)( ? , 0))de J [Proposition 2.7]

5 d{(D2L( - u (e2)(0, ? )))( - u (e2)( ? , 0))

2 (D2L( - u (e1)(0, ? )))( - u (e1)( ? , 0))}

[since, u (0, ? ) is a Lagrangian flow]

Therefore (3.2) obtains. n
We now turn to a generalized conservation law of energy.

Theorem 3.2. Given u : D 3 D ` ® M and w 1, w 2: D ® D ` , if u (0, ? ) is

a Lagrangian flow, if u (d, w 1(d )) 5 u (0, w 1(0)) and u (d, w 2(d )) 5 u (0, w 2(0))

for any d P D, and if u satisfies

(3.4) d #
w 2(?)

w 1(?)

L( - u (e)(?, ? ))de 5 0

then

(3.5) d w 2{D2L( - u ( w 2(0))(0, ? ))( - u ( w 2(0))(0, ? ))
2 L( - u ( w 2(0))(0, ? ))}

5 d w 1{D2L( - u ( w 1(0))(0, ? ))( - u ( w 1(0))(0, ? ))
2 L( - u ( w 1(0))(0, ? ))}

where d * w 2(?)
w 1(?) L( - u (e)(?, ? ))de denotes the derivative of the mapping

d P D j * w 2(d)
w 1(d) L( - u (e)(d, ? ))de P R at 0.

Proof. We have that
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(3.6) #
w 2(d)

w 1(d)

L( - u (e)(d, ? ))de 2 #
w 2(0)

w 1(0)

L( - u (e)(0, ? ))de

5 #
w 2(d)

w 2(0)

L( - u (e)(d, ? ))de 2 #
w 1(d)

w 1(0)

L( - u (e)(d, ? ))de

1 #
w 2(0)

w 1(0)

{L( - u (e)(d, ? )) 2 L( - u (e)(0, ? ))}de

We have also that

(3.7) #
w 2(d)

w 2(0)

L( - u (e)(d, ? ))de

5 #
w 2(0) 1 d d w 2

w 2(0)

L( - u (e)(d, ? ))de

5 d d w 2L( - u ( w 2(0))(d, ? )) [Proposition 1.1]

5 d d w 2{L( - u ( w 2(0))(0, ? )) 1 d d (L( - u ( w 2(0))(?, ? )))}

5 d d w 2L( - u ( w 2(0))(0, ? ))

By the same token we have

(3.8) #
w 1(d)

w 1(0)

L( - u (e)(d, ? ))de

5 d d w 1L( - u ( w 1(0))(0, ? ))

By the same token as in Theorem 3.1 we have

(3.9) #
w 2(0)

w 1(0)

{L( - u (e)(d, ? )) 2 L( - u (e)(0, ? ))}de

5 D2L( - u ( w 2(0))(0, ? ))( - u ( w 2(0))( ? , 0))

2 D2L( - u ( w 1(0))(0, ? ))( - u ( w 1(0))( ? , 0))

Since u (d, w 1(d )) 5 u (0, w 1(0)) for any d P D by assumption, we have

(3.10) - u ( w 1(0))( ? , 0) 1 - u ( w 1(0))(0, ? ) d w 1 5 0

By the same token we have

(3.11) - u ( w 2(0))( ? , 0) 1 - u ( w 2(0))(0, ? ) d w 2 5 0

It follows from (3.6)±(3.11) that

(3.12) #
w 2(d)

w 1(d)

L( - u (e)(d, ? ))de 2 #
w 2(0)

w 1(0)

L( - u (e)(0, ? ))de

5 d d w 2{D2L( - u ( w 2(0))(0, ? ))( - u ( w 2(0))(0, ? ))
2 L( - u ( w 2(0))(0, ? ))}
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2 d d w 1{D2L( - u ( w 1(0))(0, ? ))( - u ( w 1(0))(0, ? ))
2 L( - u ( w 1(0))(0, ? ))}

Our desired result (3.5) now follows from (3.4) and (3.12).
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